A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression.

نویسندگان

  • Yoav Banitt
  • Kevan A C Martin
  • Idan Segev
چکیده

Simple cells in layer 4 of the primary visual cortex of the cat show contrast-invariant orientation tuning, in which the amplitude of the peak response is proportional to the stimulus contrast but the width of the tuning curve hardly changes with contrast. This study uses a detailed model of spiny stellate cells (SSCs) from cat area 17 to explain this property. The model integrates our experimental data, including morphological and intrinsic membrane properties and the number and spatial distribution of four major synaptic input sources of the SSC: the dorsal lateral geniculate nucleus (dLGN) and three cortical sources. The model also includes synaptic properties of these inputs. The cortical input served as sources of background activity, and visual stimuli was modeled as sinusoidal grating. For all contrasts, strong synaptic depression of the dLGN feedforward afferents compresses the firing rates in response to orthogonal stimuli, keeping these rates at practically the same low level. However, at preferred orientations, despite synaptic depression, firing rate changes as a function of contrast. Thus, when embedded in an active network, strong synaptic depression can explain contrast-invariant orientation tuning of simple cells. This is true also when the dLGN inputs are partially depressed as a result of their spontaneous activity and to some extent also when parameters were fitted to a more moderate level of synaptic depression. The model response is in close agreement with experimental results, in terms of both output spikes and membrane voltage (amplitude and fluctuations), with reasonable exceptions given that recurrent connections were not incorporated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1

We examine the effects of short-term synaptic depression on the orientation tuning of the LGN input to simple cells in cat primary visual cortex (V1). The total LGN input has an untuned component as well as a tuned component, both of which grow with stimulus contrast. The untuned component is not visible in the firing rate responses of the simple cells. The suppression of the contribution of th...

متن کامل

Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning.

We study a recently proposed "correlation-based," push-pull model of the circuitry of layer 4 of cat visual cortex. This model was previously shown to explain the contrast-invariance of cortical orientation tuning. Here we show that it can simultaneously account for several contrast-dependent (c-d) "nonlinearities" in cortical responses. These include an advance with increasing contrast in the ...

متن کامل

Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.

The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the contrast invariance of orientation tu...

متن کامل

Modeling Visual Cortical Contrast Adaptation E ects

We demonstrate a detailed visual cortical circuit which exhibits robust contrast adaptation properties, consistent with physiological observations in V1. The adaptation mechanism we employ is activity-dependent synaptic depression at thalamocortical and local intra-cortical synapses. Model contrast response functions (CRF) shift so that cells remain maximally responsive to changes around the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 38  شماره 

صفحات  -

تاریخ انتشار 2007